
A Practical Comparison of Motion Planning Techniques for Robotic Legs in
Environments with Obstacles

Tristan B. Smith
Mission Critical Technologies, Inc.

NASA Ames Research Center
Moffett Field, CA 94035–1000

Email: tristan.b.smith@nasa.gov

Daniel Chavez-Clemente
Department of Aeronautics and Astronautics

Stanford University
Stanford, CA 94305–4035

Email: dchavez@stanford.edu

Abstract

ATHLETE is a large six-legged tele-operated robot. Each
foot is a wheel; travel can be achieved by walking, rolling, or
some combination of the two. Operators control ATHLETE
by selecting parameterized commands from a command
dictionary. While rolling can be done efficiently, any motion
involving steps is cumbersome - each step can require mul-
tiple commands and take many minutes to complete. In this
paper, we consider four different algorithms that generate a
sequence of commands to take a step. We consider a baseline
heuristic, a randomized motion planning algorithm, and two
variants of A* search. Results for a variety of terrains are
presented, and we discuss the quantitative and qualitative
tradeoffs between the approaches.

1. Introduction

ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Ex-
plorer) is a large six-legged robot developed at the Jet
Propulsion Laboratory (see Figure 1). ATHLETE is a
flexible platform designed to serve multiple roles during
manned and unmanned missions to the moon, including
transportation, construction and exploration. It is intended
to be remotely operated from earth or by astronauts on the
moon.

ATHLETE has six legs attached to a hexagonal chassis
and is omni-directional. Each of ATHLETE’s six legs has
hip, knee, and ankle joints (each with 2 degrees of freedom),
resulting in 36 degrees of kinematic freedom. At the end of
each leg is a multi-purpose wheel. The wheel can be locked
to serve as a foot or unlocked to roll; it can also be used to
operate tools using a mechanical adaptor.

In the three years since prototype ATHLETE (1/2 scale)
robots became operational, a wide array of capabilities have
been demonstrated ([1], [4]). ATHLETE can roll on smooth
terrain, combine walking with rolling to traverse uneven
terrain and even climb ledges. It can manipulate tools, rappel
down a steep slope, and coordinate with other robots.

Figure 1. ATHLETE on a hillside.

Operators use laptops to send parameterized commands to
ATHLETE. Rolling can be commanded efficiently; a single
command can direct the robot to travel long distances. How-
ever, any motion involving steps is cumbersome - a single
step can require multiple commands and take many minutes
to complete, with much of the time spent deciding how to
proceed. For example, here is a sequence of commands that
might be used to take a simple step over a rock:

• Raise foot 50 cm.
• Rotate hip joint 60 degrees.
• Rotate hip joint 10 degrees.
• Lower foot 50 cm.
• Lower foot 5 cm.
Notice that to produce this plan the operator must:
• Figure out a feasible sequence of commands. This can

requires trial and error; even in relatively benign terrain,
it is common for the robot to refuse operator commands
due to physical constraints or safety limits it is forced
to obey.

• Guess appropriate magnitudes for those moves. In the
above example, it would have been faster to use a single
Rotate of 70 degrees (and a single Lower of 35 cm),
but this is only apparent in hindsight.

We are involved in work to make ATHLETE opera-
tion faster and more efficient by automatically suggesting
sequences of commands to an operator; first to achieve
individual steps, and subsequently to achieve multi-step

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space
(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs. 1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci , or
• A three-tuple in task space, xyzi .

In addition, we have functions, TO-TSPACE(ci , leggy)
and TO-CSPACE(xyzi , leggy), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi , could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi , leggy) is one-to-
one and always computes the same ci for a given xyzi .

Finally, we have a function COLLISION-FREE(ci , ci+1)

that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi , to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi .

Given this data, we compute start and goal configurations,
cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart , ... , cgoal) through configuration space such that each
edge (ci , ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL ,2 simply calls
COLLISION-FREE(cstart , cgoal) . If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Algorithm 1
function S BL(cstart, cgoal)

1: T1. root = cstart

2: T2. root = cgoal

3: while not timed out do
4: Execute EXPAND-TREE
5: τ +— CONNECT-TREES
6: if τ is not empty then
7: Return success
8: end if
9: end while

10: Return failure

SBL is a sampling-based motion planning technique.
The search for feasible paths is conducted by sampling
configurations between the start and goal, and verifying if
(a) they are feasible, and (b) they can be connected without
collisions.

The algorithm proceeds by growing two C-Space trees
T1 and T2 rooted at cstart and cgoal toward each other.
On every iteration one of the trees is selected at random
with probability 0.5, and a new milestone mnew is added
to it (EXPAND-TREE step). The planner then checks if a
connection can be established between the trees (CONNECT-
TREES step), and if so it generates a candidate path τ from
cstart to cgoal. This path includes a segment called a bridge,
connecting mnew to m, the nearest milestone in the opposite
tree. If τ is found to be collision-free, success is returned.
Otherwise iterations continue until time-out, at which point
failure is returned. This means that either no path exists, or
SBL was unable to find one.

The EXPAND-TREE step proceeds as follows: from the
selected tree T, an existing milestone is selected at random
with probability π (m), which is inversely proportional to
the density of milestones of T near m. Then, a collision-
free configuration is randomly selected within an adaptively-
chosen distance of m, and is added to T as the new milestone
mnew. This selection strategy distributes the exploration
around areas reachable from the root configurations, and at
the same time prevents over-sampling. It should be noted
that only mnew is checked for collisions at this stage, not the
segment connecting it to m. Segment checks are postponed
until they are absolutely necessary in the CONNECT-TREES
step. This lazy approach has the effect of reducing the total
number of expensive collision checks.

The CONNECT-TREES step of SBL is executed when the
distance between mnew and m is smaller than or equal to
the distance threshold. At this point the candidate path τ
is checked for collisions to a resolution ε by a TEST-PATH
routine, and τ is returned as the motion plan if it is collision-
free; otherwise, iterations continue.

For further details on SBL the reader is referred to the

original paper by Sanchez and Latombe [2].

2.4. A* Search in Configuration Space

Our third approach, CFG uses A* search [5] through the
six-dimensional configuration space for legi . We discretize
each dimension into increments of r radians, and search over
the resulting grid.

Algorithm 2
function ASTAR(start, goal)

1: start.g = 0
2: start.h = DISTANCE (start,goal)
3: start.parent = NULL
4: queue. ADD (start)
5: while n = GET-BEST-NODE(queue) and n not NULL

and not timed out do
6: if n is goal then
7: Return success
8: end if
9: succs = GET-SUCCESSORS(n)

10: if n near goal then
11: succs .ADD(goal)
12: end if
13: for all s in succs do
14: s.g = n.g + DISTANCE(n, s)
15: s.h = DISTANCE(s, goal)
16: s.parent = n
17: queue .ADD(s)
18: end for
19:end while
20: Return failure

Algorithm 2 outlines our approach . 3 A queue of nodes is
initialized with a node representing the start configuration.
Each node n in queue stores:

• n.g ,the distance travelled to get there,
• n.h, an optimistic estimate of the distance to the goal,

and
• n.parent, the node from which n was generated.
At each step, the function GET-BEST-NODE returns the

node n in queue for which n.g + n.h is lowest. 4 Then,
n is expanded; GET-SUCCESSORS returns the twelve grid
nodes (obtained by moving left or right along each of the six
dimensions) adjacent to n, which are then added to queue
with appropriate g and h values.5

3. We used a slightly modified version of the C++ implementation written
by Justin Heyes-Jones: http://www.geocities.com/jheyesjones/astar.html

4. This order in which nodes are explored distinguishes A* search from
other graph-search algorithms, and ensures that the resulting solution will
be optimal.

5. In traditional A* search, GET-SUCCESSORS will only return a succes-
sor s if COLLISION-FREE(n, s) passes. However, we have implemented
a lazy version of A* described further in Section 2.6.

When success is returned, the solution can easily be
extracted because each node stores its parent.

2.5. A* Search in Task Space

Finally, our fourth approach, TSK, uses A* search but
over a discretized grid in three-dimensional task space. Each
point xyzi represents a position of the foot (which then has
a corresponding point, TO-CSPACE(xyzi), in configuration
space). Algorithm 2 is still used but GET-SUCCESSORS(n)
returns the six grid nodes in task space adjacent to n, and
DISTANCE(ni , ngy) computes three-dimensional Euclidean
distance rather than distance in configuration space. The
function COLLISION-FREE still checks the line between
each pair of nodes in configuration space since the final
commands to the robot will be configuration space moves.

Task space search is probably the most intuitive approach,
as one can picture the wheel moving through the three-
dimensional grid. In addition, the smaller branching factor
(6 instead of 12) means the search space is exponentially
smaller than that of CFG, which allows a much finer
granularity to be used for the grid. 6

The smaller search space is also a potential dis-
advantage to this approach. Recall that function TO-
CSPACE(xyzi , leggy) is one-to-one, even though xyzi could
map to multiple configurations. Recall also that to check
an edge (xyzi ,xyzgy) in task space, we still check for
collisions in configuration space, using COLLISION-FREE(
TO-CSPACE(xyzi),TO-CSPACE(xyzgy)). This test might fail
even if there exist other valid configurations for xyzi and
xyzgy for which the edge is collision-free. Therefore, there
is the risk that this approach, even with very fine resolution,
will fail to find solutions that do exist. In effect, we’re
searching only a portion of the configuration space searched
by our other approaches.

2.6. Optimization 1: Lazy A* Search

For our domain, the computationally expensive piece of
each A* implementation is the COLLISION-FREE function.
This is different than typical A* domains, where the compu-
tation of g and/or h are most expensive. Therefore, we have
implemented a lazy version of Algorithm 2 that changes two
aspects of typical A* search:

1) In typical A*, GET-SUCCESSORS only returns a
neighbor s if COLLISION-FREE(n, s) succeeds. Our
lazy A* returns all neighbors, and therefore avoids
calling COLLISION-FREE when a node is added.

2) As a result unreachable nodes are included in queue.
Therefore, GET-BEST-NODE(queue), instead of sim-
ply returning the top node n in queue, must call

6. For example, doubling the granularity increases the search space size
by a factor of 8 for task space, but by a factor of 64 for configuration space.

COLLISION-FREE(n.parent, n); if this succeeds n
can be returned; if it fails, n is discarded, the next
node in queue is considered, and so on.

This approach means there will be nodes n in queue
that cannot be expanded because the path from n’s parent
has collisions. However, the same point in space with a
different parent might expand successfully. Therefore, unlike
traditional A*, we may need to add a single point in space
to queue multiple times; we can only avoid adding a point
if the same point has been both added and successfully
expanded.

As a result, it is not at all obvious that this lazy approach
is a good idea. On the one hand, we avoid checking edges to
nodes that never end up getting expanded. On the other hand,
each point in space could have multiple copies in queue,
making the maintenance (especially sorting) of queue more
difficult. In the worst case, where A* expands all nodes
in queue before finding a solution, this overhead certainly
makes the lazy approach more expensive.

For the experiments we describe in Section 3, the lazy
version of A* is an improvement. In configuration space,
between 1.3 and 9.7 (depending on the terrain) times more
nodes are added on average, while search times are reduced
by 43 to 82 percent on average. Similarly, in task space,
between 1.2 and 4.8 times more nodes are added, while
search times are reduce by 25 to 70 percent. Nonetheless,
lazy A* is not always better; for 4 of the 958 instances
considered, the lazy A* version of CFG times out (and
therefore fails) even though the standard implementation
succeeds.

2.7. Optimization 2: Path Smoothing

Because SBL is a random algorithm, and returns the first
valid path found, the result can be a very inefficient and odd-
looking step. For results to be acceptable to human operators
a post-processing algorithm to smooth the resulting path was
developed. We follow a smoothing approach similar to the
one proposed in [6]. Our algorithm does the following:

1) Expand path into a graph by joining every pair (ci , cgy)

of vertices for which COLLISION-FREE (ci , cgy) suc-
ceeds.

2) Run Dijktstra search on this graph to find the shortest
path from cstart to cgoal. This has the effect of cutting
off unnecessary corners in the original path.

3) Add vertices to path by bisecting each edge.
4) Repeat steps 1 through 3 until the improvement made

in a given iteration is less than 10%.
We use smoothing to improve the paths returned by our

A* algorithms as well; although they return optimal paths
along the discretized grids, there are usually shorter paths
that cut corners and pass diagonally through the grid. The
smoothing algorithm in configuration space is outlined in
Figure 3.

Figure 3. Path smoothing in a hypothetical 2D C-space:
cstart and cgoal are separated by a C-obstacle. (1) Mo-
tion plan with N1 nodes before smoothing; (2) shortest
path found using Dijkstra’s algorithm, with N2 < N1

nodes; (3) the simplified path is bisected, adding N2 — 1
nodes; (4) Dijkstra’s algorithm is re-run.

3. Experimental Setup

To compare algorithms, we generated four different types
of terrain. For each, we hand-picked a set, L, of repre-
sentative points on the left side of the leg, and a similar
set, R, on the right. We then consider each possible pair,
(l i E L, rj E R) , and try stepping both from li to rj and
vice versa, resulting in IL I • I R I • 2 problem instances for
each terrain. The four terrains, three of which are shown in
Figure 4, are:

Figure 4. The Bump, Step, and Well terrains used in
our experiments.

• Flat: Completely flat terrain (IL I = I R I = 11). This
serves as a baseline.

• Bump: Terrain with a 40 cm bump between L and R
(I L I = I R I = 14). This is probably the most realistic
terrain; stepping with ATHLETE is most likely to be
done over rocks in the lunar landscape.

• Step: Terrain with a 50 cm ledge; L is at the top of
the ledge, and R is at the base (IL I = 15, I R I = 6).

• Well: Terrain with two wheel-sized wells surrounded
by raised terrain, where L is in one well and R the
other (IL I = 8, I RI = 9). This terrain was our attempt

to generate a difficult example that was quite different
than the other terrains.

This results in a total of 958 problem instances. We
configure our algorithms as follows:

• Search fails if a solution is not found within 5 minutes.7

We run each A* approach with two granularities.
CFG(1.0) and CFG (0.33) use 1 radian and 0.333
radians,8 respectively, while TSK(0.2) and TSK(0.1)
use 0.20 m and 0.10 m, respectively. Roughly speaking,
the coarser granularity was intended to make the search
time comparable to SBL while the finer granularity
allows better answers to be found, but more slowly.
We attempt to reach the goal node from a search node
in A* (see line 11 in Algorithm 2) if the distance to
the goal is less than 2 radians in configuration space,
and 40 cm in task space.
Since each run of SBL produces a different result, we
average the SBL results over 10 runs for each problem
instance.

4. Experimental Results

Figure 5 shows the fraction of problem instances solved
by each approach. As expected, SMPL often fails and is not
really a viable approach. Besides SMPL, there are very few
failures. SBL and TSK(0.1) succeed on every instance.
TSK(0.2) fails on 13 of the Bump instances. CFG(1.0)
cannot solve 23 of the 144 Well instances because no
solution exists using the coarse grid, while CFG (0.33)
times out on 4 of the 180 Step instances.

Figure 5. Success ratios.

7. This seems like a long time to wait for a solution to a single step;
that it has been acceptable in practice points out how time-consuming the
stepping process currently is.

8. Note that the high dimensionality of configuration space forces us to
use very coarse granularities in this space; 1 radian is almost 60 degrees.

Figure 6 shows average runtimes while Figure 7 shows
standard deviations. Running times are small on average,
with SMPL obviously the fastest, and the finer granularity
searches taking generally the longest. One notable exception
is the case of the Well, where CFG(1.0) is the slowest
algorithm. This is almost certainly caused by an increase in
the number of collision checks required to find a sequence
of large C-Space swings that can maneuver within the
constrained space of the well. As evidenced by Figure 7,
CFG clearly suffers from the higher dimensionality of the
search space which causes a higher variance in runtimes;
it is the only algorithm with any instances that exceed five
seconds. For example for the Bump instances, TSK(0.1)
averages 1.17 seconds per instance, but never takes longer
than 3.5 seconds. On the other hand, CFG (0.33) averages
4.07 seconds per instance, but 7 of the 450 instances take
longer than 30 seconds. For the Well, the same curious
behavior is seen to influence CFG(1.0) for the reasons
mentioned above.

Figure 6. Runtimes, split into search and smoothing
times.

Figure 8 shows the length of the resulting configura-
tion space paths, before and after smoothing . 9 Surprisingly,
although CFG (0.33) is best, and TSK is worst, before
smoothing, those results are almost completely negated by
smoothing, with SBL doing best for three of the four
terrains. Smoothing also helps TSK become competitive
on this metric, although it still does poorly on the Bump
terrain.

Figure 8. Configuration space distances.

Figure 9 shows the average distances in task space for
each approach. Here, TSK(0.1) is the clear winner, outper-
forming all other algorithms on all data sets, before and
after smoothing. Finally, Figure 10 shows the maximum
values for each terrain, confirming that SBL and CFG(1.0)
occasionally produced very long paths, even after smoothing.

Figure 9. Task space distances.

5. Operator Preferences

Originally, SBL without smoothing was demonstrated
to ATHLETE operators. It was immediately clear that the

9. For the rest of the results presented here, we exclude SMPL; because
it only succeeds on the easiest instances, results for that algorithm are

Figure 7. Runtime standard deviations. 	 skewed.

Figure 10. Maximum distances in task space for each
terrain.

results were unacceptable; as suggested by Figure 10. Large
moves would be made to traverse small distances and steps
would look awkward and unnatural. Smoothing was quickly
implemented, resulting in an algorithm that operators accept.

However, a certain amount of hesitance exists when using
SBL. One reason is that it still produces large, awkward
steps occasionally. An equally important reason is the lack
of predictability in the randomized approach. ATHLETE is
large, weighs almost a ton, and is very expensive; safety
of the robot and those around it is the primary concern,
especially when it is operated in a remote location. For
good reason, operators are more comfortable with positions
and movements they have seen before. If there are two
equally-efficient path to get from a to b, operators would
like software that returns the same path each time using
a straightforward algorithm; this allows them to become
familiar and comfortable with the software and the decisions
it makes.

These concerns motivated our research. CFG was devel-
oped first, and demonstrated to ATHLETE operators, using
the finer granularity (0.33). This approach was well-received,
although operators have not yet had enough experience with
it to determine if the occasional long running time is of
concern. In simulation, the coarse granularity CFG was
found to produce larger swings than desirable when stepping
over some medium-sized obstacles. This prompted the use
of the finer-granularity version on the robot, since no post-
planning smoothing had been applied to CFG at the time.

Given the results of this work, we suspect that TSK(0.1)
will utimately be the approach chosen. It was able to solve
all instances and ran quickly. Most importantly, it produced
the shortest paths in task space. We suspect this is the most
important metric for gauging human preferences; because
the goal is to get a foot from a to b, we believe that a path
that minimizes the movement of that foot will be preferred
by operators.

6. Related Work

The A* algorithm has seen widespread use in the field
of robotics, and is explained in detail in a number of publi-
cations, e.g. [5]. Several variants and derivatives have been
developed, and an excellent overview of these is provided
in [7].

For problems with high-dimensional configuration space
sampling-based techniques have become increasingly popu-
lar. The techniques can be roughly divided in two groups:
single-query and multiple-query algorithms. Again, a num-
ber of these techniques exist, with [8], [9] providing good
summaries and tips regarding applicability to specific prob-
lems.

Practical comparisons of planning techniques are rare.
Of special interest is [10], which compares A* with RRT-
Connect as applied to the problem of motion planning
for reconfigurable robots. RRT-Connect is a bi-directional
technique like SBL, and their findings indicate a similar
advantage in processing speed of RRT over A*. The quality
of the RRT solutions, while poor, are also improved via
smoothing.

Finally, for a very complete and accessible open-source
library of motion planning algorithms we refer the reader to
the OOPSMP project at Rice University [11].

7. Future Work

The most important next step is to allow ATHLETE opera-
tors to experiment with the different approaches, especially
T SK, and determine the benefits and drawbacks to each,
from their perspective.

In addition, all four of our approaches are simple, and
there are ways that they could be tuned to produce better
results. For example, if A* search perfoms line 11 of
Algorithm 2 for every expanded node, we have observed
better results for most runs, but slower runtimes for the most
difficult instances. An alternative would be to try cgoal with
some small probability.

Notice that we treat all dimensions in configuration space
equally. In reality, a move of 1 radian at the hip joint swings
the entire leg around, while the same magnitude rotation at
the wheel joint leaves most of the leg in place. Therefore, we
should individually scale each dimension of configuration
space to reflect these differences. This scaling would be
used for measuring configuration space distance, and would
also push CFG towards ’small’ moves, since the algorithm
minimizes this distance.

Our results suggest that combining our algorithms into a
hybrid approach would yield better results than any individ-
ual approach. For example, the data here suggests we should
simply try SMPL before another algorithm in case it finds
an answer. Even better would be to give each approach a

small amount of time (5 seconds, perhaps), and use the best
result.

In this work, we assume the chassis is already in an
appropriate position for the step. In practice, a chassis shift
might be necessary to perform a step, either to redistribute
weight, or to raise (or lower) the chassis in order for the leg
to reach the goal. We could expand any of our approaches
to include search over possible chassis positions.

Ideally, we should also include consideration of dynamics
and related safety concerns directly into search. Such con-
siderations will be especially important when ATHLETE is
carrying heavy cargo.

Finally, some very interesting work remains to be done on
the subject of “natural-looking” steps. This is a challenging
problem largely because it is difficult to establish and
objective measure of the visual appeal of a given motion.
While it has been suggested that minimal-energy paths might
look more natural, we have yet to explore this through
experiments. The argument for energy minimization is bio-
inspired, but given the mechanical differences between its
limbs and those of living organisms, the question of how
closely a robot like ATHLETE can mimic natural behaviors
remains unanswered.

8. Conclusion

We have outlined four different algorithms for taking a
step with ATHLETE. Three approaches, SMPL, SBL, and
CFG, search in configuration space while TSK searches
in task space. We tried each algorithm on a total of 958
problem instances spread across 4 types of terrain, and then
considered the advantages and disadvantages of each.

As expected SMPL is extremely fast, but untenable due
to its high failure rate. SBL also runs quickly, but produces
a wide range of path lengths in both configuration and task
spaces; these variances are only partially muted by the post-
SBL smoothing.

CFG produces short paths in configuration space, but
suffers from the high dimensionality of its search space;
the fine-grained version can run for minutes on difficult
instances, while the faster version is too coarse to get good
results.

TSK results are most consistent; the finer grained version
is the only approach other than SBL to solve all instances,
runtimes are comparable to SBL, and configuration space
distances are only slightly worse than other methods. TSK
consistently get the shortest task space distance, arguably
the most important metric.

The motivation of this work was to explore alternative
to SBL because operators are uncomfortable with the
randomness, and occasional bad results, of that approach.
CFG has already been well recieved by operators, despite
its drawbacks. Due to our experimental results, we suspect
that TSK will becomed the approach of choice.

Acknowledgment

The authors would like to thank Vytas Sunspiral for
his early interest in the research, David Smith and Javier
Barreiro for their input, and David Mittman at JPL for
supporting our time with ATHLETE. Some of the SBL
libraries were kindly provided by Kris Hauser at Stanford
University.

References

[1] Brian H. Wilcox et al., ATHLETE: A cargo handling and
manipulation robot for the moon, Journal of Field Robotics,
24(5), pp. 421–434, 2007.

[2] Gildardo Snchez and Jean-Claude Latombe, A Single-Query
Bi-Directional Probabilistic Roadmap Planner with Lazy Col-
lision Checking. R.A. Jarvis and A. Zemlinsky (Eds): Robotics
Research, STAR 6, pp. 403–407, 2003.

[3] Kris Hauser et. al., Motion Planning for a Six-Legged Lunar
Robot. Proceedings of the Workshop on the Algorithmic Foun-
dations of Robotics, 2006.

[4] Matthew Heverly and Jaret Matthews, A Wheel-on-limb Rover
for Lunar Operation, iSAIRAS08, 2008.

[5] Stuart Russell and Peter Norvig, Artificial Intelligence, A
Modern Approach (2nd. Ed), pp. 97–101, 2003.

[6] Jayesh N. Amin et. al., A Fast and Efficient Approach to Path
Planning for Unmanned Vehicles, Proceedings of the AIAA
Guidance and Control Conference and Exhibit, Keystone, CO,
August 2006.

[7] Dave Ferguson et al., A Guide to Heuristic-based Path Plan-
ning, AAAI Journal, 2005.

[8] Roland Geraerts and Mark H. Overmars, A Comparative Study
of Probabilistic Roadmap Planners, Algorithmic Foundations of
Robotics V, STAR 7, pp. 43-57, 2004.

[9] Stefano Carpin, Randomized Motion Planning – A Tutorial,
International Journal of Robotics and Automation, Vol 21-3,
2006.

[10] David Brandt, Comparison of A* and RRT-Connect Motion
Planning Techniques for Self-Reconfiguration Planning, Pro-
ceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, Oct 9-15, 2006.

[11] Erion Plaku et. al., OOPS for Planning, An Online, Open-
source Programming System. IEEE International Conference
on Robotics and Automation (ICRA), 2007.

